a2 United States Patent

Tasher et al.

US009455962B2

US 9,455,962 B2
Sep. 27,2016

(10) Patent No.:
45) Date of Patent:

(54) PROTECTING MEMORY INTERFACE

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

Applicant: Winbond Electronics Corporation,

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

US 2015/0089223 Al

Zhubei (TW)

Nir Tasher, Tel Mond (IL); Moshe
Alon, Tel Aviv (IL); Valery Teper,
Petah Tikva (IL); Ziv Hershman,

Giv’at Shmu’el (IL); Uri Kaluzhny,

Beit Shemesh (IL)

WINBOND ELECTRONICS
CORPORATION, Taichung (TW)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 81 days.
14/301,456
Jun. 11, 2014

Prior Publication Data

Mar. 26, 2015

Related U.S. Application Data

Provisional application No. 61/880,932, filed on Sep.

22, 2013.
Int. C.

HO4L 9/32 (2006.01)

HO4L 29/06 (2006.01)

GO6F 21/85 (2013.01)

HO4L 9/06 (2006.01)

U.S. CL.

CPC ... HO4L 63/0428 (2013.01); GO6F 21/85

(2013.01); HO4L 9/0662 (2013.01); HO4L

USPC 713/168
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,521,853 A 6/1985 Guttag
5,671,283 A 9/1997 Michener et al.
6,272,637 Bl 8/2001 Little et al.
6,915,175 B2 7/2005 Ahn
6,976,136 B2 12/2005 Falik et al.
7,082,539 Bl 7/2006 Kitahara et al.
7,194,626 B2 3/2007 Craft
7,248,696 B2 7/2007 Craft et al.
(Continued)
FOREIGN PATENT DOCUMENTS
AU 2001027074 B2 7/2001
EP 1063811 Al 12/2000
(Continued)

OTHER PUBLICATIONS

TCG PC Specific Implementation Specification, Version 1.1, 72
pages, Aug. 18, 2003.
(Continued)

Primary Examiner — Christopher Brown
(74) Attorney, Agent, or Firm — D.XKligler IP Services Ltd.

(57) ABSTRACT

An apparatus includes an interface and logic circuitry. The
interface is configured to communicate over a communica-
tion link. The logic circuitry is configured to convert
between a first stream of plaintext bits and a second stream
of ciphered bits that are exchanged over the communication
link, by applying a cascade of a stream ciphering operation
and a mixing operation that cryptographically maps input

9/3247 (2013.01)
Field of Classification Search

bits to output bits.

CPC HO4L 63/08 14 Claims, 4 Drawing Sheets
N
HoST VM
”
. 72 BINDING KEY |~40
CRYPTO SEQUENCE CRYPTO SEQUENCE
GENERATOR GENERATOR SESSION KEY [-~56
& | L
s
D | DEMXING | wx [STREAM X STREAM | wx_ [MbxnG | ox| mem
CRU = Uit DECIPHER CIPHER UNIT ARRAY
S S 5)
3% o0 &0 52 48S 2
h) 3
LINK VULNERABLE

TO ATTACKS

US 9,455,962 B2
Page 2

(56)

7,269,747
7,739,565
7,826,271
7,836,269
7,881,094
7,882,365
7,889,592
8,041,032
8,108,941
8,140,824
8,225,182
8,312,294
8,427,194
8,429,513
8,549,246
8,576,622
8,578,179
8,745,408
8,756,439
8,781,111
8,832,455
2001/0003540
2002/0164022
2003/0005453

2003/0084285
2003/0084346
2003/0097579
2003/0200026
2004/0260932
2005/0024922
2005/0039035
2005/0058285

2005/0114687
2005/0123135
2006/0026418
2006/0026693
2006/0059553
2006/0107054
2006/0253708
2007/0133437
2007/0192592
2008/0155273
2009/0196420
2009/0217377
2009/0327633
2010/0070779
2010/0098247
2010/0106920
2010/0146190
2010/0158242

References Cited

U.S. PATENT DOCUMENTS

B2
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Bl
B2
Bl
Al
Al
Al

Al
Al
Al
Al
Al
Al
Al
Al

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

9/2007
6/2010
11/2010
11/2010
2/2011
2/2011
2/2011
10/2011
1/2012
3/2012
7/2012
11/2012
4/2013
4/2013
10/2013
11/2013
11/2013
6/2014
6/2014
7/2014
9/2014
6/2001
11/2002
1/2003

5/2003
5/2003
5/2003
10/2003
12/2004
2/2005
2/2005
3/2005

5/2005
6/2005
2/2006
2/2006
3/2006
5/2006
11/2006
6/2007
8/2007
6/2008
8/2009
8/2009
12/2009
3/2010
4/2010
4/2010
6/2010
6/2010

Catherman et al.
Lesea
Cernea
Obereiner et al.
Chen
Natarajan et al.
Kim
Katoozi et al.
Kanai
Craft
Kagan et al.
Sato et al.
Deas et al.
Smith et al.
Pekny et al.
Yoon et al.
Accicmez et al.
Mangard
Jannson et al.
Qi et al.
Drewry et al.
Pomet et al.
Strasser et al.
Rodriguez HO04N 7/17318
725/87

Cromer et al.

Kozuch et al.

England et al.

Pearson

Blangy et al.

Li et al.

Clowes

Stein ..oooovveieennis HO041. 9/0631
380/29

Zimmer et al.

Hunt et al.

Bade et al.

Bade et al.

Morais et al.

Young

Bardouillet et al.

Wengrovitz et al.

Goettfert et al.

Conti

Chester et al.

Arbaugh et al.

Fusella et al.

Martinez et al.

Suumaki

Anckaert et al.

Chang

Asher

2010/0169654 Al 7/2010 Kiel et al.
2011/0185435 Al 7/2011 Chang
2011/0283115 Al 112011 Junod
2011/0285421 Al 112011 Deas et al.
2012/0102307 Al 4/2012 Wong
2012/0204056 Al 82012 Airaud et al.
2012/0275595 Al 112012 Emelko
2013/0145177 Al 6/2013 Cordella et al.
2013/0262880 Al 10/2013 Pong et al.
2013/0339730 Al 12/2013 Nagai et al.
2013/0339744 Al 12/2013 Nagai et al.
2014/0082721 Al 3/2014 Hershman et al.

2014/0143883 Al
2014/0281564 Al
2015/0074406 Al

5/2014
9/2014
3/2015

Shen-Orr et al.
Nagai et al.
Nagai et al.

FOREIGN PATENT DOCUMENTS

EP 1615370 Al 1/2006
EP 2566096 A2 3/2013
WO 03053001 Al 6/2003
WO 2013035006 Al 3/2013

OTHER PUBLICATIONS

TCG PC Client Specific Implementation Specification for Conven-
tional BIOS, Version 1.20 Final Revision 1.00, 1.2; Level 2, 119
pages, Jul. 13, 2005.

TCG PC Client Specific TPM Interface Specification (TIS), Speci-
fication Version 1.21 Revision 1.00, 103 pages, Apr. 28, 2011.
TPM Main Part 1 Design Principles, Specification Version
1.2 ,Revision 62, 150 pages, Oct. 2, 2003.

Java Security Architecture, 62 pages, Dec. 6, 1998.

Tasher et al., U.S. Appl. No. 14/244,000, filed Apr. 3, 2014.
Tasher et al., U.S. Appl. No. 14/467,077, filed Aug. 25, 2014.
Kaluzhny et al., U.S. Appl. No. 14/311,396, filed Jun. 23, 2014.
Japanese Application # 2014-192887 Office Action dated Aug. 18,
2015.

European Application # 14185186.5 Search Report dated Feb. 17,
2015.

U.S. Appl. No. 14/467,077 Office Action dated Sep. 30, 2015.
U.S. Appl. No. 14/311,396 Office Action dated Sep. 8, 2015.
U.S. Appl. No. 15/004,957 Office Action dated Feb. 24, 2016.
KR Application # 10-2014-0125216 Office Action dated Feb. 16,
2016.

U.S. Appl. No. 13/965,256, Office Action dated Jun. 27, 2016.
U.S. Appl. No. 14/702,791, Office Action dated Jun. 16, 2016.
Zhuang, H.,“HIDE: An Infrastructure for Efficiently Protecting
Information Leakage on the Address Bus”, Proceedings of the 11th
international conference on Architectural support for programming
languages and operating systems (ASPLOS’04), pp. 72-84, Boston,
USA, Oct. 9-13, 2004.

* cited by examiner

US 9,455,962 B2

Sheet 1 of 4

Sep. 27, 2016

U.S. Patent

SHOVLLY OL .
TIaVEINTNA NI L "Old
¢ ¢
< ¢ < S 9 <
Aveay || 1NN | waHan ¥3HdIDAA | wn] s
wan 1Xa | onoan X1 wyauls X0 G || Wy3uls | XW | ONIXIN-3a [XG
y y y y e y Y y y
Nw
HOLYYINIO HOLYYINIO
P9 ADINOISSIS [35030035 OLdAND JON3ND3S OLdAwg [~ LA NOISS3S
7l 9
o A3 ONIONIE AZY ONIONIE
o
NAN LSOH
/ON

U.S. Patent Sep. 27, 2016 Sheet 2 of 4 US 9,455,962 B2

START VALUE = R START VALUE =R
98~ LFSR_INV 94~ LFSR
K-1 K
32 /32
DE-MIX MIX
e
32 BIT GF /32 MIXED DATA MX=DX*K | 32BIT GF
MULTIPLIER [7 MULTIPLIER | _
32 S S /
DX 90 90 132
DX
RECOVERED DATA RETRIEVED
DATATO FROM MEM
HOST ARRAY
MEMORY CONTROLLER SIDE | NVM SIDE

FIG. 2

US 9,455,962 B2

Sheet 3 of 4

Sep. 27, 2016

U.S. Patent

} 39VIS 7> 7 39V1S ¢ 94
R N —r ,
v — 7P 8V | g
S e Y1 |
j' n_O 1198
3 o > o
5 N KN
1 g e# 4 .
SREREIRAREE N B T Y [8/€Z] L#
8/ £X 49 1198 1 (2 ¥ e
—{r—{— » 491198
0L 8/ €M ;
T R 2 7 001
1 I ek T 1V 1 | 7 e
T | dAdILNA RS EXA of
49 119 8 Y Yz d3NdILINW o
L o 4o.d8
8/ Z2M >
| § ¥3NdILINN M TS oo
¢t T Wk £ MW)
NI YLV Yz omr e | dolia8 T
—_— >
XAl g o 2 8/ 12 > —>
NIV1d 001 1no
0L~ ¥S41 119 %9 | 4IHS v1vd d3axin
i gy
IANTVA LEVLS 119 79

US 9,455,962 B2

Sheet 4 of 4

Sep. 27, 2016

U.S. Patent

¢ 39V1S ¥ 39VIS ¥ 'Ol4
UM
v 2L ¢l
pre—— > AP >
T ML 5757 $ T oL
401188 - HANILINN g7y
2 S dougs
oo 00 Y Yo
2]
| oeem L e
‘ | %i\l
» M3ILINNW Gl
TR 7 e
F 491198 m“ SEA T andinm e
49 119 8
001 >
| eem 2 4 001
oy YL ez (g = bL#
‘ 49 1198 4 AL gy
d ——=>| 491188
00l >—V— g O%
I T 2 *ﬁi g
. i 21 7Tl s
|
et o | dardiLni - ¥ANILINN 77y -1
26 91188 » 0L88 Txq
NIVLYa _,) 3 AN TR X4,
aaxin XW |ANI2 ANCL om_ Y1¥a
80}~ ANIHSAT Lig b9 —141HS d343A003Y
A
: S~y
INTVA LEVLS 119 ¥9

US 9,455,962 B2

1
PROTECTING MEMORY INTERFACE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application 61/880,932, filed Sep. 22, 2013, whose
disclosure is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to data security,
and particularly to methods and systems for protecting
stream-ciphered data.

BACKGROUND OF THE INVENTION

In various secure storage systems a host exchanges data
with one or more storage devices. Methods for securing the
interface between the host and the storage devices are
known in the art. For example, U.S. Patent Application
Publication 2013/0262880, whose disclosure is incorporated
herein by reference, describes a memory access circuit and
a corresponding method. The memory access circuit
includes a cryptographic block in communication with a
memory that encrypts data of a data block on a block basis.
The memory access circuit also includes a fault injection
block configured to inject faults to the data in the data block.
The memory access circuit further includes a data scrambler
and an address scrambler. The data scrambler is configured
to scramble data in the memory by shuffling data bits within
the data block in a plurality of rounds and mash the shuffled
data bits with random data. The address scrambler is con-
figured to distribute the scrambled data across the memory.
A memory system including the memory access circuit is
also disclosed to implement the corresponding method.

As another example, U.S. Patent Application Publication
2011/0283115, whose disclosure is incorporated herein by
reference, describes a method for generating final software
code, which is resistant to reverse engineering analysis, from
an initial software code, which is executed by a processor
that directly handles data of maximal size of M bits. Gen-
erating the final software code comprises the steps of: (i)
building a conversion table whose input comprises one
instruction and its output comprises a plurality of equivalent
instructions or sets of instructions, (ii) splitting the input data
into a plurality of segments, each segment having a random
length not exceeding M, and (iii) for each instruction of a
block of instructions, selecting pseudo-randomly an equiva-
lent instruction or set of instructions using the conversion
table so as to obtain an equivalent block of instructions, and
appending the plurality of equivalent blocks of instructions
to obtain the final software code.

SUMMARY OF THE INVENTION

An embodiment of the present invention that is disclosed
herein provides an apparatus including an interface and logic
circuitry. The interface is configured to communicate over a
communication link. The logic circuitry is configured to
convert between a first stream of plaintext bits and a second
stream of ciphered bits that are exchanged over the com-
munication link, by applying a cascade of a stream ciphering
operation and a mixing operation that cryptographically
maps input bits to output bits.

In some embodiments, the ciphered bits are exchanged
over the communication link between a memory device and

10

15

20

25

30

35

40

45

50

55

60

65

2

a processor. In other embodiments, the ciphered bits
exchanged over the communication link comprise software
code that executes in real time on the processor.

In an embodiment, the logic circuitry includes two or
more interconnected mixing stages, including at least first
and last mixing stages, each mixing stage including multiple
Galois Field (GF) multipliers, and the logic circuitry is
configured to apply the mixing operation by splitting the
input bits among the GF multipliers of the first mixing stage,
and combining results of the last mixing stage to produce the
output bits. In another embodiment, each of the GF multi-
pliers in the one or more mixing stages is configured to
accept multiplicand bits from the input bits or from a
previous mixing stage, and to further accept a respective
mixing key, wherein the mixing key is the GF multiplicative
inverse of a corresponding mixing key in a remote apparatus
at an opposite side of the communication link, and the logic
circuitry is configured to apply the mixing operation by
multiplying the multiplicand bits by the respective mixing
key in each of the multiple GF multipliers.

In some embodiments, the logic circuitry is configured to
apply the mixing operation by multiplying the input bits by
a respective non constant mixing key in a Galois-Field (GF).
In other embodiments, the logic circuitry is configured to
iteratively update the mixing key in coordination with a
remote apparatus at an opposite side of the communication
link, by multiplying the mixing key in the respective GF by
a constant element or by a GF multiplicative inverse of the
constant element, such that at any given time the mixing key
is the GF multiplicative inverse of a corresponding mixing
key used by the remote apparatus. In yet other embodiments,
the constant element and the GF multiplicative inverse equal
2 and 27! respectively, and the logic circuitry is configured
to generate the mixing key using a Linear Feedback Shift
Register (LFSR) that implements a GF multiplication opera-
tion using a shifting operation. In yet further other embodi-
ments, the logic circuitry is configured to initialize the
mixing key to a number that is an integer power of 2 or 27"
in the respective GF so that an initial mixing key is the GF
multiplicative inverse of a corresponding initial mixing key
used by the remote apparatus.

There is additionally provided, in accordance with an
embodiment of the present invention, a method, including
exchanging ciphered bits over a communication link. A
conversion between a first stream of plaintext bits and a
second stream of the ciphered bits that are exchanged over
the communication link is carried out, by applying a cascade
of a stream ciphering operation and a mixing operation that
cryptographically maps input bits to output bits.

The present invention will be more fully understood from
the following detailed description of the embodiments
thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that schematically illustrates a
secure storage system, in accordance with an embodiment of
the present invention;

FIG. 2 is a diagram that schematically illustrates a method
for cryptographic mixing, in accordance with an embodi-
ment of the present invention; and

FIGS. 3 and 4 are diagrams that schematically illustrate
alternative embodiments for cryptographic mixing, in accor-
dance with an embodiment of the present invention.

US 9,455,962 B2

3
DETAILED DESCRIPTION OF EMBODIMENTS

Overview

In many secure storage systems, a host communicates
with a memory device over a communication link or bus that
may be vulnerable to various cryptographic attacks.
Embodiments of the present invention that are described
herein provide improved methods and systems for securing
the interface of a memory device against cryptographic
attacks.

The link between the host and the memory device can be
secured, in principle, by encrypting the data exchanged over
the link, in both directions. In the reading direction the
memory device sends ciphered data to the host, and in the
writing direction the memory device receives ciphered data
from the host. In each communication direction, one of the
memory device and host serves as a sending party, and the
other as a receiving party.

Low latency in accessing the memory is important, for
example, when the Central Processing Unit (CPU) of the
host executes code that is fetched in real-time from the
memory device. To reduce latency and complexity, the data
communicated over the link is typically encrypted using
stream ciphering techniques, as opposed to high-latency
block ciphering. At the sending party, a stream cipher
encrypts plaintext data with a pseudo-random sequence
(e.g., using a bitwise XOR operation) to produce the cipher
text, and at the receiving party, a decipher decrypts the
cipher text with the same sequence to recover the plaintext
data.

Stream ciphering is advantageous in terms of low com-
plexity and latency, but may be vulnerable to cryptographic
attacks, such as attacks that are based on bit positions. For
example, an unauthorized attacker may monitor or change
the value of the stream-ciphered data in accordance with a
certain periodic pattern corresponding to one or more fix-
positioned bits of the memory device interface, in an attempt
to break the security of the system. Embodiments that are
described herein protect against this vulnerability of the
stream-cipher.

In the reading direction, the memory device serves as a
sending end, and the host as a receiving end. In some
embodiments, prior to masking by the stream cipher, the
memory device applies a cryptographic mixing operation to
the plaintext using a secret mapping key. The mixing opera-
tion maps the plaintext data bits into mixed bits, such that it
would be infeasible for an unauthorized user, who does not
know the mapping key, to guess the values and/or positions
of the plaintext data bits. The host, after de-ciphering,
applies an inverse mapping (with respect to the mixing
mapping) to de-mix the mixed bits and recover the plaintext
data. In the writing direction, the host and memory device
respectively serve as sending and receiving ends, applying a
similar processing flow.

In an embodiment, cryptographic mixing is based on
Galois-Field (GF) arithmetic. In the description that follows,
we assume that arithmetic operations are applied to the
elements of a given Galois Field (GF) that may be generated
using some underlying generating polynomial. Since the
disclosed techniques apply to any valid generating polyno-
mial, the details regarding the underlying generating poly-
nomial are typically omitted. The term “multiplication” thus
refers to multiplication between elements in the given GF,
and the term “multiplicative inverse” of a given element
refers to an element in the GF that, when multiplied by the
given element (using GF arithmetic), results in the unity

10

15

20

25

30

35

40

45

50

55

60

65

4

element defined in that GF. Similarly the term “power”
refers to repeated multiplications of an element in the given
GF by itself.

Assume, for example, a mixing unit at the sending end,
which receives N-bit plaintext data DX. In an example
embodiment N=32 bits, but in alternative embodiments N
may comprise any suitable positive integer. The mixing unit
comprises an N-bit GF multiplier that multiplies DX by an
N-bit secret mapping key K, and outputs an N-bit mixed data
MX=K*DX, wherein the operator * denotes multiplication
in the respective GF.

The receiving end comprises a de-mixing unit that accepts
the N-bit MX, and using a similar N-bit GF multiplier,
multiplies MX by an inverse mapping key that equals the
multiplicative inverse of the mapping key K, ie,
DX=MX*K™!.

In some embodiments, each of the sending and receiving
parties iteratively updates the mixing key in coordination
with the other party at the opposite side of the communica-
tion link, such that at any given time the mixing key used by
one party is the GF multiplicative inverse of the correspond-
ing mixing key used by the other party.

In some embodiments, the mixing unit generates the
secret mapping key K using a Linear Feedback Shift Reg-
ister (LFSR), and the de-mixing unit generates the inverse
mapping key K=* using another LFSR. The LFSRs used for
mixing and de-mixing are initialized to respective secret
values R and R, and are shifted in synchronization with
one another so that the respective mapping keys (in the
sending end and in the receiving end) equal the multiplica-
tive inverse of one another.

Calculating the GF multiplicative inverse of an arbitrary
element in the GF involves considerable computational
resources. In an embodiment, to reduce the complexity of
calculating the initial inverse value R™' at the de-mixing
unit, the initial value R is restricted to be a non-negative
integer power r of 2, i.e., R=2". The de-mixing unit holds a
fixed pre-calculated value of 27!, and calculates the initial
inverse value as a power r of 27%, ie.,, R™'=27'Y. The
complexity of calculating R™! via power operations is sig-
nificantly lower compared to general multiplicative inverse
calculations.

Generating the mixing keys using LFSRs is not manda-
tory. In alternative embodiments, any other suitable means
can be used for initializing and updating the mixing keys in
the sending and receiving ends to be the GF multiplicative
inverse of one another at any given time. Additionally or
alternatively, the mixing keys can be configured to be an
integer power of a constant number in the respective GF
other than 2 and 27"

In some embodiments, the mixing unit mixes 32-bit
plaintext data by applying two mixing stages, each com-
prising four 8-bit GF multipliers. In the first stage, each of
the four GF multipliers multiplies an 8-bit input data drawn
from the 32-bit plaintext data, by a respective 8-bit mapping
key. Using 8-bit multipliers (rather than a 32-bit multiplier)
is advantageous in terms of physical size, implementation
complexity and latency.

An interconnection scheme maps the 32 bits output from
the first stage into four 8-bit that input the four GF multi-
pliers of the second stage. Each of the GF multipliers of the
second stage multiplies its respective 8-bit input by a
respective 8-bit mapping key to produce an 8-bit mixed
output. The four 8-bit outputs of the second stage are then
combined to produce a 32-bit mixed data output.

In some embodiments, the mixing unit generates the eight
mapping keys for the first and second mixing stages using a

US 9,455,962 B2

5
64-bit LFSR. The mixing unit splits the 64-bit LFSR output
into two 32-bit keys that are each further split into four 8-bit
mapping keys.

In the receiving end, a de-mixing unit comprises two
de-mixing stages that each comprises four 8-bit GF multi-
pliers. The de-mixing unit further comprises a 64-bit LFSR
operating in synchronization with the LFSR of the mixing
unit, and that outputs eight 8-bit inverse mapping keys, each
equals the multiplicative inverse of a respective mapping
key of the mixing unit. In an embodiment, the LFSRs in both
sides generate the same pseudo-random sequence, and at the
de-mixing side each 8-bit subgroup of the 32-bit LFSR
output is separately inverted in the respective GF, e.g., using
a lookup table. The tables size and memory space required
for inverting four 8-bit GF elements (1Kx8 bit) is signifi-
cantly smaller than a lookup table required for inverting a
32-bit GF element (4Gx32 bit).

The de-mixing unit applies the GF multiplications in the
two de-mixing stages, and further applies an inverse inter-
connection scheme between the first and second de-mixing
stages, so as to recover the plaintext data.

In the disclosed techniques, cryptographic mixing is per-
formed prior to stream ciphering. The mixing operation
maps plaintext data bits into mixed bits that disguise the true
values and positions of the plaintext bits. Implementing the
mixing operation using GF multipliers incur only small
increase in complexity and latency.

System Description

FIG. 1 is a block diagram that schematically illustrates a
secure storage system 20, in accordance with an embodi-
ment of the present invention. System 20 comprises a
memory device 24 that stores data for a host 28 in a memory
array 32. Memory device 24 may store any suitable type of
data, such as, for example, user data, executable code, and
secure system states. The system states include information
such as, for example, the system up time, system events and
errors logging information, and self-test results. The data
may be stored in memory array 32 in encrypted or unen-
crypted form.

In the example of FIG. 1, memory device 24 comprises a
nonvolatile memory (NVM). In alternative embodiments,
memory device 24 may comprise any suitable memory of
any suitable type, such as read only memory (ROM),
random access memory (RAM), or any type of NVM, such
as Flash memory. Host 28 communicates with memory
device 24 over a link 34 using a respective communication
interface (not shown).

The storage commands for memory device 24 include at
least data read, write, modify and erase. The host executes
storage operations by applying respective communication
signals over link 34. Additionally or alternatively, a CPU 36
of'host 28 may execute code that is fetched in real time from
memory device 24 by reading code instructions and data
over link 34.

In some embodiments, link 34 comprises a parallel link or
bus, having separate data, address and control lines. In other
embodiments, link 34 comprises a serial link, in which data,
address and control information are transferred serially on a
common physical connection. Examples of such serial inter-
faces include Serial Peripheral Interface (SPI), Inter-Inte-
grated Circuit (1°C), Universal Serial Bus (USB), Multime-
dia Card (MMC) interface and Secure Digital (SD) interface.

In the present example, we assume that each of host 28
and memory device 24 comprises a separate semiconductor
die, and that the two dies reside on a common package or on

30

40

45

55

6

separate packages. We further assume that an unauthorized
attacker has no direct access to secret information within
each die, but can open the package to gain access to link 34
signals in attempt to break the system security. The main
cryptographic attacks that an unauthorized user may attempt
over link 34 include:

Modify transmitted information on the fly in an attempt to

conduct a cryptographic attack at specific bit positions.

Obtain secret information that is stored in the memory

device.

Modify information that is stored in the memory device.

Force the memory device to perform unauthorized com-

mands.

Obtain knowledge regarding the system states.

Change the state of the system on the fly.

Perform reverse engineering to learn about the function-

ality of the system.

In the disclosed embodiments, the communication
between host 28 and memory device 24 is secured by
manipulating the data to be exposed over link 34 in a secret
manner. The data manipulation comprises a cascade of
cryptographic data mixing and stream ciphering, as will be
described in detail below. As a result, even if an unauthor-
ized attacker gains access to link 34 signals, it would be
difficult or impossible for the attacker to conduct crypto-
graphic attacks, e.g., as listed above. The data manipulation
should have minimal performance penalty in terms of access
delay to/from the memory device, and computational com-
plexity. In some embodiments, the data manipulation
includes data ciphering and cryptographic data mixing as
described in detail below.

Each of memory device 24 and host 28 comprises a
respective secret binding key 40 and 44. The host and the
memory device use the binding keys to mutually authenti-
cate each other, and to prevent unauthorized access to secret
information when the authentication fails. The size of bind-
ing keys 40 and 44 should be large enough to provide
sufficient cryptographic strength, such as 128-bit keys or
larger. In some embodiments, host 28, memory device 24, or
both, generate the binding keys using symmetric key sharing
protocols, which result in identical binding keys 40 and 44.
In other embodiments, the host and memory device employ
asymmetric key sharing protocols (also referred to as public-
private key sharing protocols), in which binding keys 40 and
44 are typically different.

In some embodiments, binding keys 40 and 44 are con-
stant throughout the system lifetime. Alternatively, the con-
figuration of keys 40 and 44 can be occasionally replaced by
first erasing the binding keys, as well as any other secret
information, from the host and memory device, and then
reconfigure binding keys 40 and 44 to new secret values.

In some embodiments, host 28 generates binding key 40
locally, and delivers key 40 to be stored in a nonvolatile
location of memory device 24. For example, in an embodi-
ment, host 28 measures some physical property within the
host die, and converts the measurement result to a respective
bit sequence to be used as a secret value for binding key 40
(and/or other secret information). Such physical properties
may comprise, for example, certain delay paths within the
die, threshold voltage for flipping the states of semiconduc-
tor gates within the die, and self-oscillating frequency of a
ring oscillator in the die.

In an embodiment, host 28, memory device 24, or both,
verify the validity of binding key 40 (e.g., on power up)
using a cryptographic digest calculated over binding key 40
and stored along with binding key 40 in the memory device.
Host 28 and/or memory device 24 can similarly verify the

US 9,455,962 B2

7

validity of binding key 44 using a respective calculated
cryptographic digest that is stored in the host along with
binding key 44.

As described above, the data is securely exchanged over
link 34, by manipulating the data to be exposed over link 34
in a secret manner. For the sake of clarity, FIG. 1 depicts
only the reading direction, in which the host reads data that
is stored in memory array 32. Data manipulation in the
opposite direction, from host 28 to memory device 24, is
typically implemented in a similar manner. The data stored
in memory array 32 can be encrypted or non-encrypted.

Assume that memory device 24 stores data in memory
array 32 in a given data unit, such as, for example 32-bit
unit, or any other suitable data unit size. In the reading
direction, memory device 24 retrieves a unit of plaintext data
DX from memory array 32. DX inputs a mixing unit 48,
which cryptographically maps the DX bits to produce mixed
data MX. A stream cipher 52 then encrypts MX, and the
memory device sends the encrypted data CX over link 34. In
the description that follows the term “mixing” refer to
cryptographic mapping of input bits to output bits using a
secret mapping key, such that guessing the input bits from
the output bits without knowing the mapping key is com-
putationally infeasible. The mapping operation in mixing
unit 48, and the ciphering operation in stream cipher 52
depend on secret session key 56 as described in detail below.

In the reading direction, host 28 receives the ciphered data
CX and recovers the plaintext data DX. Host 28 first
deciphers CX to recover MX using a stream decipher 60,
and then inverts the operation of mixing unit 48 by de-
mixing MX back to DX using de-mixing unit 64. The
operations in decipher 60 and de-mixing unit 64 depend on
a secret session key 68, which should be aligned to session
key 56 to ensure proper inversion of the respective mixing
and ciphering operations that were carried out by memory
device 24.

In the writing direction (not shown in the figure), host 28
writes data to memory device 24. In this case, host 28
applies data mixing and ciphering prior to sending the data
over link 34, while memory device 24 recovers the plaintext
data by applying de-ciphering and then de-mixing.

For a given reading or writing direction, the end to end
data flow includes de-mixing that inverts the mixing opera-
tion, and deciphering that inverts the ciphering operation. In
some embodiments, however, the mixing and ciphering
operations in the writing direction may be different from the
mixing and ciphering operations in the reading direction.

Secret session keys 56 and 68 serve for manipulating the
data to be exposed over link 34 in a secret manner. Host 28
can reconfigure session keys 56 and 68 occasionally, such as,
for example, on power up. In some embodiments, the host
sends to the memory device a session secret comprising an
encrypted version of session key 56, which was encrypted
using binding key 44. The memory device retrieves session
key 56 by decrypting the session secret using binding key
40.

In other embodiments, host 28 sends an unencrypted
session seed to the memory device. Each of memory device
24 and host 28 generates a respective session key 56 or 68
using both the session seed and the respective binding key
40 or 44 using any suitable cryptographic algorithms or
methods such as, for example, SHA or AES.

Host 28 and memory device 24 further comprise respec-
tive cryptographic sequence generators 72 and 76. Stream
cipher 52 applies bitwise XOR between the bit sequence
generated by generator 72 and MX to generate the ciphered

10

15

20

25

30

35

40

45

50

55

60

65

8

output CX. Similarly, stream decipher 60 applies bitwise
XOR between the sequence generated by generator 76 and
CX to recover MX.

Each of sequence generators 72 and 76 generates a
pseudo-random sequence based on the respective session
key 56 or 68, so that it would be infeasible for an unauthor-
ized user who has no access to the session keys and to the
state of the system to predict the actual pseudo-random
sequences. Generators 72 and 76 are synchronized to gen-
erate a new sequence for each transaction over link 34, or
once per several communication transactions.

Generators 72 and 76 can generate the pseudo-random
sequence using any suitable method. In one embodiment,
sequence generator 72 comprises a hash function, such as
SHA-2, and a counter (not shown) that increments per
transaction (or per several transactions). Generator 72 gen-
erates the output sequence by calculating the hash function
over session key 56 and the counter value.

In another embodiment, generator 72 calculates the hash
function over the session key, the counter value and the
plaintext data (or part thereof) that was transmitted in a
previous transaction, and is therefore known to both sides. In
yet another embodiment, for example when the size of the
hash function output is cryptographically insufficient, gen-
erator 72 further inputs the hash function result to a Linear
Feedback Shift Register (LFSR) whose output serves as the
pseudo-random sequence.

The configurations of system 20, memory device 24 and
host 28 in FIG. 1 are example configurations, which are
chosen purely for the sake of conceptual clarity. In alterna-
tive embodiments, any other suitable configuration of a
secure storage system, memory device and host can also be
used. For example, in one embodiment, the host communi-
cates with the memory device via an additional memory
controller. In this embodiment, each of the links between the
host and memory controller, and between the memory
controller and the memory device, can be secured using the
disclosed techniques. In another embodiment, the host itself
serves as a memory controller that manages the memory
device.

The different elements of memory device 24 and host 28,
such as mixing unit 48, stream cipher 52, sequence generator
72, decipher 60, de-mixing unit 64 and sequence generator
76 may be implemented using any suitable hardware, such
as in an Application-Specific Integrated Circuit (ASIC) or
Field-Programmable Gate Array (FPGA). In some embodi-
ments, some elements of device 24 and host 28 can be
implemented using software, or using a combination of
hardware and software elements.

In some embodiments, certain elements of memory
device 24 and/or host 28, such as mixing unit 48 and/or
de-mixing unit 64, may comprise a general-purpose proces-
sor, which is programmed in software to carry out the
functions described herein. The software may be down-
loaded to the processor in electronic form, over a network,
for example, or it may, alternatively or additionally, be
provided and/or stored on non-transitory tangible media,
such as magnetic, optical, or electronic memory.

In the example of FIG. 1, a host 28 communicates with a
single memory device 24. In alternative embodiments, the
host, such as a memory controller, may communicate with
multiple memory devices, each having respective binding
and session keys. In such embodiments, the host or memory
controller should communicate with each memory device
using matching respective secret keys.

In the example of FIG. 1 above, the sending side applies
ciphering after data mixing and the receiving side applies

US 9,455,962 B2

9

de-ciphering and then de-mixing. In alternative embodi-
ments, mixing may be applied after ciphering in the sending
side, and de-ciphering after de-mixing in the receiving side.

In the description that follows and in the claims, the
various elements of memory device 24 and/or host 28 are
collectively referred to as logic circuitry.

Example Embodiments for Data Cryptographic
Mixing

FIG. 2 is a diagram that schematically illustrates a method
for cryptographic mixing, in accordance with an embodi-
ment of the present invention. Cryptographic mixing corre-
sponds to a reversible mapping of input bits to output bits
using a secret mixing key.

In the present example, the method includes crypto-
graphic mixing and de-mixing parts that are carried out by
respective mixing unit 48 and de-mixing unit 64. As
depicted in FIG. 1 above, the output of mixing unit 48 is
encrypted at the NVM side and decrypted in the host side,
so that effectively the mixed data MX generated by mixing
unit 48 is input to de-mixing unit 64. Therefore, although in
practice the data flow typically includes data ciphering and
deciphering, these elements are omitted for the sake of
clarity, and the method of FIG. 2 is described with the output
of mixing unit 48 directly inputs de-mixing unit 64.

In the example of FIG. 2, the mixing operation is based on
Galois-Field (GF) multiplication. Mixing unit 48 comprises
a 32-bit GF multiplier 90 and a LFSR 94. GF multiplier 90
accepts a 32-bit plaintext data DX and a 32-bit secret
mapping key K from LFSR 94. GF multiplier 90 multiplies
DX by K in the respective GF to produce the 32-bit output
MX=DX*K.

Mixing unit 48 initializes LFSR 94 to an initial secret
value denoted R. The initial value R is typically derived
from the session key, and is therefore known to both the
sending and receiving parties. Shifting LFSR 94 corre-
sponds to multiplication by 2 in the respective GF field. For
each new DX input (or per several such inputs), LFSR 94
shifts to produce a respective new mapping key K, thus
achieving cryptographic mapping from DX to MX.

De-mixing unit 64 performs a cryptographic inverse map-
ping with respect to mixing unit 48. De-mixing unit 64
comprises 32-bit GF multiplier 90 (similar to the GF mul-
tiplier in the memory device side) and a LFSR 98 denoted
LFSR_INV. When LFSR 94 initializes to R, LFSR_INV 98
initializes to the multiplicative inverse R™'. In addition,
shifting LFSR_INV is equivalent to multiplying by 27%. As
a result, by synchronizing between the shifting of LFSR 94
and LFSR_INV 98, the output of LFSR equals the multi-
plicative inverse of the output of LFSR 94 at all times. In
other words, when LFSR 94 outputs a 32-bit secret K,
LFSR_INV 98 outputs a respective 32-bit secret K=*. By
multiplying MX by K™*, GF multiplier 90 recovers DX from
MX.

In one embodiment, R may comprise any value, and host
28 calculates the multiplicative inverse R~ using any suit-
able method. In another embodiment, in which the compu-
tational resources for finding the multiplicative inverse are
limited, R is restricted to the form R=2", r being a nonnega-
tive integer. Similarly, the multiplicative inverse is restricted
to the form R~!'=(27'Y", wherein the value 27! in the respec-
tive GF field can be determined in advance, e.g., at die
design time. Calculating R™! using power operations is
significantly less complex than calculating multiplicative
inversion for a general number.

10

15

25

40

45

55

10

FIGS. 3 and 4 are diagrams that schematically illustrate
alternative methods for cryptographic mixing, in accordance
with an embodiment of the present invention. In the descrip-
tion that follows, we assume that mixing and de-mixing
units 48 and 64 of FIG. 1 are implemented using the
respective embodiments depicted in FIGS. 3 and 4, respec-
tively.

In FIG. 3, the cryptographic mixing operation is imple-
mented using two mixing stages denoted STAGE_1 and
STAGE_2, each comprising four 8-bit GF multipliers 100.
The GF multipliers of STAGE_1 and STAGE_2 are num-
bered #1 ... #4 and #5 . . . #8, respectively. A 64-bit LFSR
104 generates two 32-bit secrets K1 and K2 to be used in the
respective stages STAGE_1 and STAGE_2.

In STAGE_1, 32-bit input DX is split into four 8-bit
sub-inputs denoted X1 . . . X4. Additionally, K1 is split into
four 8-bit sub-keys denoted K11 . . . K14. GF multiplier #1
multiplies X1 by K11 and outputs the multiplication result
Y1. Similarly, GF multipliers #2 . . . #4, respectively
calculate Y2=X2%*K12, Y3=X3*K13, and Y4=X4*K14.

In STAGE_2, K2 is split into four 8-bit sub-keys denoted
K21 ... K24 that are respectively input to GF multipliers
#5 .. . #8. Each of the GF multipliers #5 . . . #8 accepts a
respective second 8-bit input Z1 . . . Z4. An interconnection
scheme maps Y1 ... Y4 to 7Z1 ... Z4.

In the present example, the interconnection scheme splits
each of Y1 ... Y4 into four 2-bit groups. Each of Z1 . . . Z4
is constructed by combining four 2-bit groups that each
originates from a different Y1 . . . Y4 result. GF multipliers
#5 .. . #8 respectively calculate 8-bit outputs W1=K21*Z71,
W2=K22*72, W3=K23*73 and W4=K24*74, which are
then combined into a 32-bit mixed data output MX.

FIG. 4 depicts an embodiment of de-mixing unit 64 that
is compatible with the embodiment of mixing unit 48
depicted in FIG. 3 above. The embodiment depicted in FIG.
4 comprises two de-mixing stages STAGE_3 and STAGE_4,
each comprising four 8-bit GF multipliers 100 that are
numbered #9 . . . #12, and #13 . . . #16, respectively.
STAGE_3 and STAGE_4 apply inverse mixing with respect
to respective mixing operations of STAGE_2 and
STAGE_1.

A 64-bit LFSR 108 (denoted LFSR_INV) outputs two
32-bit mapping keys denoted K1_INV and K2 INV. In
STAGE_3, K2_INV is split into four sub-keys K217' . . .
K247!, which each equals the multiplicative inverse of
K21 ...K24, respectively. Similarly, in STAGE_4,K1_INV
is split into four sub-secrets K117* . . . K147, which each

equals the multiplicative inverse of K11 . . . K14, respec-
tively.
LFSRs 104 and 108 are initialized to respective initial

values, and then shifted in synchronization, so that the eight
sub-keys used in STAGE_3 and STAGE_4 for de-mixing
equal the multiplicative inverse of the respective eight
sub-keys used for mixing in STAGE_2 and STAGE_1.

In an embodiment, both LFSRs 104 and 108 are initial-
ized identically, and shifted in synchronization so that they
both output identical 32-bit values. The 8-bit inverse keys in
FIG. 4 are derived from respective 8-bit groups of LFSR 108
output, using lookup tables that convert GF elements to their
GF multiplicative inverse.

In STAGE_3, 32-bit MX is split into the four 8-bit inputs
W1 ... W4. STAGE_3 recovers the intermediate results
Z1...Z4 by calculating Z1=W1*K21~! ... Z4=W4*K247*,
De-mixing unit 64 recovers Y1 ...Y4 from Z1 ... 7Z4 by
applying an interconnection scheme between STAGE_3 and
STAGE_4 that inverts the mapping from Y1 .. . Y4 to
Z1...74 used in mixing unit 48 of FIG. 3 above. STAGE_4

US 9,455,962 B2

11

recovers X1 . . . X4 by calculating X1=Y1*K117* . . .
X4=Y4*K147'. 32-bit DX is then recovered by combining
the four 8-bit X1 . . . X4 results.

In the disclosed techniques a host and a memory device
communicate over a secured link. The presented techniques,
however, are applicable to secure any other suitable com-
munication link over which any other suitable parties com-
municate.

Although the embodiments described herein mainly
address secure memory applications, the methods and sys-
tems described herein can also be used in other applications,
such as in various other data transmission applications. For
example, the disclosed techniques are applicable to secure
any wired or wireless communication link, as well as for
securing the interface of a file storage.

It will be appreciated that the embodiments described
above are cited by way of example, and that the present
invention is not limited to what has been particularly shown
and described hereinabove. Rather, the scope of the present
invention includes both combinations and sub-combinations
of the various features described hereinabove, as well as
variations and modifications thereof which would occur to
persons skilled in the art upon reading the foregoing descrip-
tion and which are not disclosed in the prior art. Documents
incorporated by reference in the present patent application
are to be considered an integral part of the application except
that to the extent any terms are defined in these incorporated
documents in a manner that conflicts with the definitions
made explicitly or implicitly in the present specification,
only the definitions in the present specification should be
considered.

The invention claimed is:

1. An apparatus comprising:

an interface, which is configured to communicate

ciphered bits over a communication link; and

logic circuitry, which is configured to convert between a

first stream of plaintext bits and a second stream of the
ciphered bits that are exchanged over the communica-
tion link, by applying a cascade of a stream ciphering
operation and a mixing operation that cryptographi-
cally maps input bits to output bits,

wherein the logic circuitry is configured to apply the

mixing operation by multiplying the input bits by a
respective non-constant mixing key in a Galois-Field
(GF), and to iteratively update the mixing key in
coordination with a remote apparatus at an opposite
side of the communication link, by multiplying the
mixing key in the respective GF by a constant element
or by a GF multiplicative inverse of the constant
element, such that at any given time the mixing key is
the GF multiplicative inverse of a corresponding mix-
ing key used by the remote apparatus.

2. The apparatus according to claim 1, wherein the
ciphered bits are exchanged over the communication link
between a memory device and a processor.

3. The apparatus according to claim 2, wherein the
ciphered bits exchanged over the communication link com-
prise software code that executes in real time on the pro-
Cessor.

4. The apparatus according to claim 1, wherein the logic
circuitry comprises two or more interconnected mixing
stages, including at least first and last mixing stages, each
mixing stage comprising multiple Galois Field (GF) multi-
pliers, and wherein the logic circuitry is configured to apply
the mixing operation by splitting the input bits among the
GF multipliers of the first mixing stage, and combining
results of the last mixing stage to produce the output bits.

10

15

20

25

30

35

40

45

50

55

60

65

12

5. The apparatus according to claim 4, wherein each of the
GF multipliers in the one or more mixing stages is config-
ured to accept multiplicand bits from the input bits or from
a previous mixing stage, and to further accept a respective
mixing key, wherein the mixing key is the GF multiplicative
inverse of a corresponding mixing key in a remote apparatus
at an opposite side of the communication link, and wherein
the logic circuitry is configured to apply the mixing opera-
tion by multiplying the multiplicand bits by the respective
mixing key in each of the multiple GF multipliers.
6. The apparatus according to claim 1, wherein the
constant element and the GF multiplicative inverse equal 2
and 27" respectively, and wherein the logic circuitry is
configured to generate the mixing key using a Linear Feed-
back Shift Register (LFSR) that implements a GF multipli-
cation operation using a shifting operation.
7. The apparatus according to claim 1, wherein the logic
circuitry is configured to initialize the mixing key to a
number that is an integer power of 2 or 27! in the respective
GF so that an initial mixing key is the GF multiplicative
inverse of a corresponding initial mixing key used by the
remote apparatus.
8. A method comprising:
exchanging ciphered bits over a communication link; and
converting between a first stream of plaintext bits and a
second stream of the ciphered bits that are exchanged
over the communication link, by applying a cascade of
a stream ciphering operation and a mixing operation
that cryptographically maps input bits to output bits,

wherein applying the mixing operation comprises multi-
plying the input bits by a respective non constant
mixing key in a Galois-Field (GF), and iteratively
updating the mixing key in coordination with a remote
apparatus at an opposite side of the communication
link, by multiplying the mixing key in the respective
GF by a constant element or by a GF multiplicative
inverse of the constant element, such that at any given
time the mixing key is the GF multiplicative inverse of
a corresponding mixing key used by the remote appa-
ratus.

9. The method according to claim 8, wherein the com-
munication link connects between a memory device and a
processor.

10. The method according to claim 9, wherein exchanging
the ciphered bits comprises exchanging software code that
executes in real time on the processor.

11. The method according to claim 8, and comprising
providing two or more interconnected mixing stages, includ-
ing at least first and last mixing stages, each mixing stage
comprising multiple Galois Field (GF) multipliers, wherein
applying the mixing operation comprises splitting the input
bits among the GF multipliers of the first mixing stage, and
combining results of the last mixing stage to produce the
output bits.

12. The method according to claim 11, wherein applying
the mixing operation comprises providing to each of the GF
multipliers in the one or more mixing stages multiplicand
bits from the input bits or from a previous mixing stage, and
a respective mixing key, wherein the mixing key is the GF
multiplicative inverse of a corresponding mixing key in a
remote apparatus at an opposite side of the communication
link, and multiplying the multiplicand bits by the respective
mixing key in each of the multiple GF multipliers.

13. The method according to claim 8, wherein the con-
stant element and the GF multiplicative inverse equal 2 and
27! respectively, and wherein applying the mixing operation
comprises generating the mixing key using a Linear Feed-

US 9,455,962 B2

13
back Shift Register (LFSR) that implements a GF multipli-
cation operation using a shifting operation.

14. The method according to claim 8, wherein updating
the mixing key comprises initializing the mixing key to a
number that is an integer power of 2 or 27! in the respective 5
GF so that an initial mixing key is the GF multiplicative
inverse of a corresponding initial mixing key used by the
remote apparatus.

14

